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Review
The renin–angiotensin system (RAS) plays a pivotal role
in cardiovascular and hydro-electrolyte homeostasis.
Blockade of the RAS as a therapeutic strategy for treat-
ing hypertension and related cardiovascular diseases is
well established. However, actions of the RAS go far
beyond the targets initially described. In this regard, the
recent identification of novel components of the RAS,
including angiotensin-(1–7) [Ang-(1–7)], Ang-(1–9), and
alamandine, have opened new possibilities for interfer-
ing with the development and manifestations of cardio-
vascular and non-cardiovascular diseases. In this article,
we briefly review novel targets for angiotensins and its
therapeutic implications in diverse areas, including can-
cer, inflammation, and glaucoma.

Introduction: the RAS
The RAS plays a crucial role in cardiovascular and hydro-
electrolyte homeostasis. The formation of the biologically
active end-products of this peptidic hormonal system is
dependent on a limited proteolysis process starting with
the cleavage of precursor, the glycoprotein angiotensinogen,
by renin. This step occurs in the circulation but also in many
organs and tissues [1]. The formation of the octapeptide
angiotensin II (Ang II) from angiotensin I (Ang I), the
product of angiotensinogen hydrolysis by renin, is mainly
dependent of angiotensin converting enzyme (ACE), a
dipeptidyl carboxyl-peptidase that is widely expressed in
many tissues including in the endothelium, a strategic
localization for the formation of circulating Ang II. The lung
vascular territory plays a pivotal role in this process. In
addition to Ang II, other biologically active end-products
are formed – including Ang III, Ang IV, and Ang-(1–7)
[1]. Furthermore, other two peptides, Ang A and alaman-
dine, can be formed by replacement of asparagine by ala-
nine, a process involving decarboxylation of the aspartate
residue. Alamandine formation can also occur by hydrolysis
of Ang A by ACE2 [2–4]. Ang III and IV formation is
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dependent of aminopeptidases, while the formation of
Ang-(1–7) is dependent mainly on the hydrolysis of Ang II
by ACE2 but is also generated by hydrolysis of Ang I by other
peptidases including prolyl-endopeptidase, neutral-endo-
peptidase (NEP), and tymeth-oligopeptidase. Carboxypep-
tidases and prolyl-endopeptidases can also contribute to the
formation of Ang-(1–7), acting on Ang II [1]. Figure 1 illus-
trates the current view of the renin–angiotensin cascade,
showing most of the novel RAS biologically active compo-
nents including Ang-(1–9), Ang A, and alamandine. Figure 2
shows the RAS receptors (and antagonists) involved in the
known biological actions of angiotensins, including Mas
(MAS1 proto-oncogene, G protein-coupled receptor) [5–9]
and the novel putative receptor for alamandine, MrgD
(MAS-related G protein-coupled receptor, member D) [2–4].

The therapeutic efficacy of the blockade of the RAS for
treating hypertension and related cardiovascular diseases
is well demonstrated. However, growing evidence indicates
that the role of the RAS goes far beyond the targets initially
identified. In fact, the list of biologically active end-pro-
ducts of the RAS is still growing, raising plenty of new
possibilities to interfere with cardiovascular and non-car-
diovascular diseases. This is particularly true for Ang-(1–
7) and more recently, alamandine, which in most cases
display activities opposed to those exerted by Ang II. In
this brief review we select some of the novel targets for
angiotensins to illustrate the growing list of possible ther-
apeutic applications of interfering with the RAS, especially
the new ACE2/Ang-(1–7)/Mas axis (Figure 3).

Cancer
Angiotensins have been reported to be involved in cancer
pathogenesis (Figure 4). Inhibition of Ang II formation by
ACE inhibitors (ACEI), or blockage of its receptor AT1, can
have beneficial effects in cancer suppression. Egami and
colleagues [10] described the reduction of tumor growth by
ACEI through blockade of angiogenesis. However, losar-
tan, an angiotensin receptor blocker (ARB), has been
reported to increase tumor perfusion, thereby improving
chemotherapy outcome by reduction of matrix production
and fibroblast density, increasing drug and oxygen delivery
[11]. ACEI and ARB also decrease the expression of vascu-
lar endothelial growth factor (VEGF) and tissue factors,
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Figure 1. Simplified view of the renin–angiotensin system (RAS) cascade. Abbreviations: ACE, angiotensin converting enzyme; ACE2, angiotensin converting enzyme 2;

Amp, aminopeptidase; Ang I, angiotensin I; Ang II, angiotensin II; Ang III, angiotensin III; Ang IV, angiotensin IV; Ang-(1–7), angiotensin (1–7); Ang-(1–9), angiotensin (1–9),

Ang A, angiotensin A; DC, decarboxylase; NEP, neutral endopeptidase (neprilysin); PEP, prolylendopeptidase.
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Figure 2. Agonists and antagonists of the known receptors of the renin–angiotensin system (RAS).
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Figure 3. Blood pressure-independent targets for angiotensins.
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which correlate with tumor progression [12]. Candesartan,
an ARB, significantly reduced transforming growth factor
b1 (TGF-b1) expression and suppressed tumor prolifera-
tion and stromal fibrosis [13], and it also significantly
inhibited the growth of tumor xenografts in mice and
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tumor angiogenesis [10]. Ang II can also bind to the AT2
receptor, triggering actions that differ from AT1 receptor.
AT2 overexpression in hepatocellular carcinoma (HCC)
cell lines and orthotopic tumor grafts led to apoptosis
mediated by activation of p38 MAPK, pJNK, caspase-8,
and caspase-3, and by inactivation of pp42/44 MAPK
(Erk1/2) [14]. A preclinical proof-of-concept of AT2 gene
delivery through intratracheal administration to lung
tumor showed successful tumoral apoptosis [15].

Combination of ACEI or ARB with other drugs has also
been tested as a cancer treatment. Experiments in a mouse
diabetes model showed that a hypoglycemic treatment
(insulin or sulfonylurea) combined with anti-angiotensin
such as renin inhibitor, aliskiren, or the ACEI, captopril,
reduced liver metastasis [16]. Combined treatment with
losartan, and anti-miR-155 showed synergistic antiproli-
ferative action in endometrial cancer cells [17]. In addition,
the combination of losartan and gemcitabine resulted in
improved survival of rats with orthotopic pancreatic cancer
due to diminished expression of VEGF and suppression of
cancer cell proliferation [18]. The combination of losartan
and AT2 agonist (CGP42112A) also synergistically de-
creased the survival of ovarian cancer cells and led to
VEGF downregulation [19]. This combination of AT1 block-
er and AT2 agonist was tested in prostate cancer, and led
to decreased numbers of cancer cells [20]. A clinical trial
Ang-(1–7)

Mas

TGF-β

ver of skeletal
scle fibrosis 

rove muscle
func�on

NF-κb
ERK1-2
TGF-β1

↓ pulmonary
fibrosis/hypertension

↓ asthma-induced
remodeling

↓ proinflammatory
cytokine produc�on

↓ collagen
deposi�on

↓ ROS

No
NF-κb

TGF-β1

↓ fibrogenesis

↓ steatosis

TRENDS in Pharmacological Sciences 

les, and actions. Red dashed lines indicate blocked pathway; blue lines indicate

n, black denotes activated expression.



Review Trends in Pharmacological Sciences May 2015, Vol. 36, No. 5
Phase I was also performed to choose the best dosage of
another ARB, candesartan, and demonstrated its safety for
use in combination with gemcitabine in patients with
advanced pancreatic cancer [21].

Hypertensive patients under treatment with ACEI or
ARB have recently been studied with several retrospective
meta-analyses regarding the outcome in cancer treatment,
with contradictory results. Several studies found no evi-
dence of increased risks of cancer-specific mortality in
cancer patients who used ACEI or ARBs, indicating the
safety of these drugs, but others showed an increased
susceptibility to develop cancer [22–28]. Other studies,
however, found that ARBs and ACEI diminished the over-
all cancer risk of patients [22,29,30]. Independent studies
with patients with esophageal squamous cell carcinoma
receiving esophagectomy, upper-tract urothelial carcino-
ma, non-muscle-invasive bladder cancer, or advanced colon
cancer showed that ACEI/ARB treatment was indepen-
dently associated with superior overall survival [30–
34]. An association between cancer and polymorphic var-
iations in the coding region of the ACE gene, including
single mutations (SNPs), deletions, and insertions, has
been also discussed in the literature, with contradictory
results. Some studies showed that ACE polymorphisms are
not associated with different types of cancer, including
lung, breast, gastric, and digestive system cancer [35–
38]. By contrast, other studies showed an association
between an ACE polymorphism (D/D genotype) and cancer,
and found increased susceptibility to hepatocellular carci-
noma [39], lymph node metastasis, oral cancer [40], and
more advanced clinical stages of gastric cancer [41]. By
contrast, some SNPs (G/G genotype) have been reported
to be associated with some protection against breast cancer
in the Brazilian population [42]. Further studies are obvi-
ously necessary to clarify whether these different outcomes
are due to gender, race, environmental influences, or as-
sociated diseases.

As described for the cardiovascular system, Ang-(1–7)
appears to have antiproliferative and antiangiogenic
actions that oppose those of Ang II in cancer. Qian and
colleagues [43] found that lung cancer has decreased ex-
pression of ACE2, and this correlates with poor clinical
outcome. In further investigations, overexpression of
ACE2 was tested in the A549 lung cancer cell line, and
this resulted in decreased metastasis [43]. This modifica-
tion upregulated the expression of E-cadherin, whose loss
is linked to cancer cell invasion and metastasis, and di-
minished the effect of TGF-b, a key signaling pathway of
this process [43].

Experiments in vitro using Ang-(1–7) treatment showed
a marked decrease in the growth of cancer cells of different
lineages, including lung cancer cells (A549, SK-LU-1, and
SK-MES-1) [44] and prostate cancer cells (Du145 and
LNCaP), as well as tumor xenografts [45] and orthotopic
tumors [46]. The growth attenuation is a consequence of a
decrease in the phosphorylation and activation of MAP
kinases ERK1 and ERK2 in lung cancer cells [44] and in
prostate tumor xenograft [46] after treatment with Ang-(1–
7). Reduction in the levels of cyclooxygenase 2 mRNA and
protein, which have been reported as procarcinogenic
and contribute to new vessel formation, angiogenesis,
and tumor growth, were also observed in lung cancer cells
treated with Ang-(1–7) [47]. Other signaling pathways
have also been demonstrated to be inactivated in tumoral
cell lines treated with Ang-(1–7), such as PI3K/AKT, P38,
and JNK, which reduce the cell migration and invasiveness
of the cells through diminishing the expression of the
metalloproteinases MMP-2 and MMP-9 [48]. These data
could explain the anti-metastatic action of Ang-(1–7) in
A549 human lung adenocarcinoma cells [48]. A recent
phosphoproteome study performed by Verano-Braga and
colleagues showed that Ang-(1–7) treatment led to (de)-
phosphorylation in different signaling pathways involved
in antiproliferative and antiangiogenic actions, such as
MAPK, AKTS1 (a subunit of mTORC1), and HDAC1,
among others. In this work they also showed dephosphor-
ylation of the transcriptional factor FOXO1 after Ang-(1–7)
treatment, and its consequent activation and translocation
to the nucleus in the lung tumoral cell line A549 where it
has antiproliferative action [49]

Another aspect modified by Ang-(1–7) in cancer is an-
giogenesis. The intratumoral vessel density of lung and
prostate tumor xenografts was reduced in mice treated
with Ang-(1–7), in agreement with the reduced CD34
immunoreactivity [50]. Expression analysis showed a re-
duction of VEGF-A protein and mRNA in lung and prostate
cancer cells treated with this heptapeptide, and a reduc-
tion in placental growth factor (PlGF) in treated prostate
cancer cells, showing that Ang-(1–7) diminishes neovascu-
larization by reducing angiogenic factors. In addition,
administration of Ang-(1–7) to prostate cancer cells in-
creased the soluble fraction of VEGF receptor 1 (sFlt-1)
which traps VEGF and PlGF, preventing activation of pro-
angiogenic signaling, thereby potentiating the anti-angio-
genic phenotype [45]. Following this line of reasoning, Abd-
Alhaseeb and colleagues [51] also observed that the com-
bination of AT1 blocker, olmesartan, with Ang-(1–7) di-
minished the intratumoral vessel density in Ehrlich’s
Carcinoma, together with reduction of insulin-like growth
factor 1 (IGF-I) serum levels and the levels of its intratu-
moral receptor. Indeed, endothelial cell tubule formation
and vessel formation in chick chorioallantoic membrane
were reduced in the presence of Ang-(1–7) [50].

A clinical Phase I/II study was performed with Ang-(1–7)
before and after chemotherapy in patients with breast
cancer. This study also evaluated the maximum-tolerated
dose of Ang-(1–7), and showed that Ang-(1–7) has no dose-
limiting toxicity until 100 mg/kg [52]. The study also dem-
onstrated that Ang-(1–7) could attenuate multilineage
cytopenias following chemotherapy at a dosage of 100 mg/
kg per day [52]. Another Phase I study with Ang-(1–7)
administered subcutaneously was performed in patients
with advanced solid tumors refractory to standard therapy
[53]. Patients showed clinical improvement with stabiliza-
tion of disease which was associated with decreased plasma
levels of placental growth factor (PlGF), indicating an anti-
angiogenic role of Ang-(1–7) [53]. For this study, a dose-
limiting toxicity was found, 700 mg/kg, which was associated
with stroke in one patient and with reversed neuropathy in
other, thus 400 mg/kg was the recommended dose for a
Phase II clinical trial [53]. Similarly, patients with sarcoma
also treated with Ang-(1–7) displayed decreased PLGF
313
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levels after treatment [54]. Other types of tumor have also
been investigated for this molecular marker, but no statis-
tical significance was found, probably due to the small size of
the sample used [54].

Inflammation
The RAS can also play a role as an immunologic modula-
tor, and can initiate not only innate but also acquired
immunity [55–57]. Ang II is regarded as proinflamma-
tory, and the activation of genes regulated by nuclear
factor kB (NF-kB) has been seen in various studies with
Ang II in vitro and in vivo [58–60]. Studies aimed at
counteracting the actions of Ang II via Ang-(1–7), or by
blockade of AngII/AT or AngII formation (ACEI), have
shown promising results against some inflammatory
pathologies (Figure 4).

Acute respiratory distress (ARDS) is the most severe
form of acute lung injury (ALI), and has a mortality rate of
at least 30–50% [61]. Losartan and irbesartan, AT1R
blockers, showed protection against the strong inflamma-
tory response in ARDS/ALI during sepsis [62,63]. A mouse
model of cecal ligation and puncture was used in one of the
studies which showed that losartan treatment inhibited
the histological appearance of ALI/ARDS and prevented
lung tissue activation of NF-kB and MAPK, leading to an
improved survival after sepsis [62]. An endotoxin sepsis
model showed that losartan prevented the reduction of
ACE2 levels in lungs and diminished proinflammatory
cytokines, improving lung injury and survival [64]. The
administration of an ACEI also improved ALI/ARDS in a
mouse model induced by oleic acid, and intercellular
adhesion molecule-1 levels diminished in lung tissue
[65]. Levels of ACE2 and Ang-(1–7) in ALI/ARDS were
diminished in a mouse model induced by inhaled lipopoly-
saccharide (LPS), as shown by Wosten–van Asperen and
colleagues [66]. Recently a cyclic form of Ang-(1–7) was
developed [66]. It has been reported that this peptide
derivative acts through Mas and is more stable than
Ang-(1–7). Treatment with cyclized Ang-(1–7), and to
lesser extent with losartan, improved lung function pa-
rameters and attenuated inflammatory mediators [66]. In
another model using oleic acid, Ang-(1–7) infusion and its
non-peptidic analog AVE09991 also protected mice and
rats from acute lung injury, as evidenced by reduced lung
edema, myeloperoxidase activity, histological lung injury
score, and pulmonary vascular resistance [63]. These
reductions are mediated by the Mas receptor because
its antagonists, A779 and d-Pro7-angiotensin-(1–7),
blocked these effects [63]. Ang-(1–7), ACEI, and ARB
are therefore potential drugs to treat or prevent ALI/
ARDS, and this is notable because no effective therapy
is available. Studies with Ang-(1–7) also suggest its po-
tential application in the treatment of asthma [67–69]. A
model using chronic ovalbumin sensitization showed that
Ang-(1–7) infusion diminished inflammatory cell infiltra-
tion and collagen deposition in the airways and lung
parenchyma, and prevented bronchial hyper-responsive-
ness [69]. Another Mas agonist, AVE0991, was also tested
and was found to prevent pulmonary remodeling, inflam-
mation, and right ventricular hypertrophy in ovalbumin-
sensitized mice [68].
314
The RAS is involved in another inflammatory pathology
associated with high morbidity and mortality: acute pan-
creatitis (AP). The degree of severity of AP, induced by
taurocholate, correlated with the tissue concentration of
Ang II [70]. Blockade of the AT1 receptor with losartan
improved AP, as shown by less histological damage, dimin-
ished myeloperoxidase activity, and reduced serum inter-
leukin-6 levels. NADPH oxidase and the NF-kB signaling
pathway are the main mediators of those actions because
losartan treatment reduced depletion of IkBb, elevated
phospho-NF-kB p65 protein expression, and enhanced
NFkB binding activity, in addition to reducing pancreatic
glutathione and nitrotyrosine levels [71]. Furthermore, an
ACE/ACE2 imbalance can correlate with the severity of
AP, as shown in ACE2 knockout (KO) or transgenic mice:
worsening of AP was seen in the ACE2 KO mice, whereas
the opposite outcome was observed in mice with ACE2
overexpression [72]. Therefore, expression of ACE2
appears to confer resistance to this disease [72]. The
Ang-(1–7) treatment in vitro had an anti-inflammatory
role and activated endothelial nitric oxide synthase and
nitric oxide signaling pathways, protecting the cell from
developing AP [73].

Angiotensin-(1–7) is also a potential therapeutic target
to treat rheumatoid arthritis, an inflammatory disease of
the joints. Experiments were performed using two models
of arthritis in which arthritis was induced in mice by
antigen (methylated bovine serum albumin) and in rats
by adjuvant (dried Mycobacterium butyricum in oil–water
emulsion). These animals were then treated with Ang-(1–
7) or the non-peptidic analog AVE099; treatment reduced
inflammation as seen by histopathology. The treated ani-
mals also displayed decreased neutrophil accumulation
and cytokine production [74]. Using the same models,
losartan treatment was also tested. Independently of
Mas activation, ARB treatment decreased inflammation
and tissue injury. In addition, it reduced neutrophil re-
cruitment, hypernociception, and cytokine production, as
well as leukocyte rolling and adhesion [75]. Refaat and
colleagues [76] also found that losartan alone reduced
inflammation and improved arthritis, but the anti-inflam-
matory effects were more pronounced when combined with
methotrexate.

The antinociceptive effect of RAS peptides was also
evaluated in other studies. The receptor Mas was found
to be expressed in dorsal root ganglia, and an antinocicep-
tive effect of Ang-(1–7) treatment was demonstrated using
the rat paw-pressure test together with prostaglandin E2
injection [77,78]. In addition, an oral active antagonist
of the AT2 receptor, EMA401, has been reported to atten-
uate peripheral neuropathic pain in patients [79]. However,
this antagonist was not fully characterized; it may interact
with other RAS receptors, as has been shown for the AT2
antagonist PD123319 by Lautner et al. [80].

The RAS has also been implicated in inflammation
of additional organs including liver [81], kidney [82], and
brain [83–85], as well as in other processes such as asthma
[67] and inflammatory pain [78,79] that will be not dis-
cussed in this review (reviewed in [86]). ARB and Ang-(1–7)
have also been suggested as potential targets to treat these
inflammatory disorders.
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Glaucoma
Glaucoma, an eye disease that causes optic nerve lesion,
can lead to irreversible blindness. This pathophysiology is
mainly due to a deficiency of drainage of aqueous humor
which can lead to elevated intraocular pressure (IOP), a
major risk factor. The current anti-glaucoma therapy is
focused on decreasing IOP. It currently includes prosta-
glandin analogs, sympathomimetics, b-blockers, and car-
bonic anhydrase inhibitors [87].

Components of the RAS including Ang-(1–7) are local-
ized in ocular tissue in humans and in normotensive and
hypertensive rats [88–90]. Recently, Mas was also localized
in developing and adult mouse retina, with higher expres-
sion levels than the AT1 receptor [91]. An important
finding regarding the role of the RAS in glaucoma was
obtained with Ang-(1–7) treatment which lowered IOP
when administered intravitreally in rabbits with normal
IOP. The Mas receptor mediates this action because its
antagonists abolish the effect [92] (Figure 4). A putative
activator of ACE2, diminazene aceturate (DIZE), was also
tested in glaucomatous rats. The administration of DIZE
both systemically and topically (eye drops) was effective in
lowering IOP, to the same proportion as one of the current
market drugs, dorsolamide. DIZE was also protective
against apoptosis of retinal cells [93]. In addition to the
effects of DIZE and Ang-(1–7) on IOP reduction, adenovi-
rus-mediated intraocular expression of ACE2 or of a fusion
protein which produces Ang-(1–7) also conferred protection
against diabetic retinopathy, as shown by diminished in-
flammation, retinal vascular leakage, acellular capillaries,
and oxidative stress [94]. ACEI has long been described to
be effective for treating glaucoma, diminishing IOP, and
against diabetic retinopathy [87,95,96]. In addition, ena-
prilat, an ACEI, has shown efficacy to lower IOP in Spra-
gue–Dawley rats to a greater degree than losartan. These
results suggest that ACEI decrease IOP by another route
in addition to reducing the availability of Ang II for inter-
action with AT1R. These mechanisms involve MMP and
cytokine modulation as shown by experiments using MMP
and cytokine inhibitors [97]. In addition to lowering IOP
in normotensive and glaucoma human subjects, the use of
ARB, Candesartan, in rats avoided retinal neuronal death
by preventing ischemia [98].

Skeletal muscle disorders
Skeletal muscle disorders can arise from a wide range of
causes including genetic predisposition to muscular weak-
ness or the aging process in healthy individuals. Abnormal
TGF-b signaling has been linked to several forms of mus-
cular dystrophy including Becker, Emery–Dreifuss, and
Duchene muscular dystrophy (DMD) [99]. Blockade of the
Ang II receptor AT1 by losartan triggers the recovery of
skeletal muscle fibrosis in mdx mice, an animal model for
DMD, by reducing TGF-b-mediated canonical signaling in
skeletal muscle fibers [100] (Figures 4 and 5).

The participation of ACE2/Ang-(1–7)/Mas receptor axis
as an important regulator of skeletal muscle physiology has
been demonstrated. Mdx mice, infused with a Mas antago-
nist (A-779), show highly deteriorated muscular architec-
ture, as well as increases in fibrosis and TGF-b signaling,
with diminished muscle strength (Figures 4 and 5). This was
reinforced when skeletal muscles from mdx/Mas-KO mice
were analyzed [101]. By contrast, infusion or oral adminis-
tration of Ang-(1–7) into mdx mice normalizes skeletal
muscle architecture, decreases local fibrosis, and improves
muscle function in vitro and in vivo [101]. Similar beneficial
effects of Ang-(1–7) were described in another mouse model
of muscular dystrophy [102]. These results clearly indicate
that under physiological conditions Ang-(1–7) has a benefi-
cial role in diminishing the fibrotic response induced by
chronic skeletal muscle damage, as in the mdx mice. The
positive effects of Ang-(1–7) were mediated by the inhibition
of TGF-b/Smad signaling which, in turn, led to reduction of
the pro-fibrotic microRNA miR-21 [101]. At the cellular
level, the numbers of skeletal muscle fibrotic fibroblasts
(Tcf4-positive) [103] responsible for the fibrotic response
[104–107] were increased in skeletal muscle of mdx mice
compared to wild type, and infusion of Ang-(1–7) significant-
ly decreased the number of fibroblasts [101].

ACE2, the enzyme responsible for Ang-(1–7) production,
is found at the sarcolemma of skeletal muscle fibers in both
wild type and mdx mice [108]. ACE2 overexpression in the
tibialis anterior muscle of mdx mice using an recombinant
adenovirus revealed that ACE2 localized in the sarcolem-
ma, with a concomitant reduction in the fibrosis associated
with tibialis anterior dystrophic muscles [108].

Skeletal muscle atrophy, which is characterized by loss
of strength and muscle mass, is a pathological condition
present after long periods of skeletal muscle inactivity.
Under atrophic stimulus, Mas receptors increase [109] and
infusion of Ang-(1–7) decreases skeletal muscle atrophy
induced by Ang II [110]. Ang-(1–7) decreases the expres-
sion of TGF-b1 induced by Ang II, prevents Smad-2 phos-
phorylation and Smad-4 nuclear translocation, and
decreases fibronectin levels, all of which are dependent
on TGF-b1 induced by Ang II [111].

Thus, the evidence demonstrates that the ACE2/Ang-
(1–7)/Mas axis is a pivotal regulator of the pathophysiology
of several skeletal muscle diseases, and argues that the
components of the axis are strong potential candidates for
therapeutic use.

Erectile dysfunction
In the past few years several studies have reported the
potential of Ang-(1–7)/ACE2 in the treatment of erectile
dysfunction [112–115] (Figure 4). After the initial descrip-
tion of a pro-erectile effect of Ang-(1–7) [116,117], a benefi-
cial effect of the heptapeptide was described in APOE KO
mice fed with a western-type diet [112]. These mice pre-
sented increased collagen deposition, increased ROS pro-
duction, and decreased erectile response as evaluated by
the dose–response of carvenosal relaxation following ace-
tylcholine administration. These alterations were attenu-
ated/reversed by treatment with an oral formulation of
Ang-(1–7). Similar beneficial effects were obtained with the
putative ACE2 activator DIZE [112]. Likewise Benter and
coworkers [113] showed a beneficial effect of Ang-(1–7)
delivered by osmotic minipumps on erectile function in
type 1 diabetic rats. Concerning blockers of the RAS, the
results are not yet clear despite a clear deleterious effect of
Ang II on erectile dysfunction [118,119]. These observa-
tions could be due to the direct effect of ACEI and ARBs on
315
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Figure 5. The figure shows (center) a diagram of a normal skeletal muscle cross-section indicating spaces containing extracellular matrix (perimysium and endomysium)

and muscle fibers with peripherally located nuclei. Top (center): dystrophic skeletal muscle (mdx) showing the increase in fibrosis, centrally located nuclei and

myofibroblasts. This increase in fibrotic components is exacerbated in mdx/Mas-knockout (KO) mice (right). By contrast, infusion of Ang-(1–7) diminishes fibrosis and the

number of myofibroblasts (left) in the dystrophic muscle. Lower (center): skeletal muscle under atrophic conditions (Ang II-induced); this induced atrophy is avoided by

Ang-(1–7) (right) which acts via the Mas receptor because A779 (antagonist of Mas) abolishes the anti-atrophic effect of Ang-(1–7) (left). Abbreviation: WT, wild type.
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blood pressure, which may mask their direct effect on the
corpus cavernosum.

Pulmonary fibrosis/hypertension
There is growing evidence that the ACE 2/Ang-(1–7)/Mas
axis confers protection against lung fibrosis and pulmonary
hypertension [120–124] (Figure 4). Ang-(1–7) has also been
reported as a protective agent for another pulmonary
disorder, asthma [67,68]. In the case of pulmonary fibro-
sis/hypertension, protection with Ang-(1–7) was achieved
with endothraqueal gene transfer [125], osmotic minipump
[121], or oral delivery [122]. Different models of pulmonary
fibrosis were also used (monocrotaline, bleomycin, and
neonatal hyperoxia). These observations suggest that pul-
monary fibrosis is a target for Ang-(1–7). Similar results
were obtained with ACE2 gene delivery, reinforcing the
316
important role of the ACE2/Ang-(1–7)/Mas in pulmonary
hypertension. Indeed, recombinant ACE2 administration
in pigs diminished pulmonary arterial pressure and vas-
cular resistance [126]. In addition, pharmacokinetic and
pharmacodynamic studies with recombinant ACE2 have
already been carried out successfully in patients [127]. In
the model of neonatal hyperoxia-induced lung injury, in
addition to a Mas agonist [cyclic-angiotensin-(1–7)], a pro-
tective role for a putative AT2 agonist [DKaAng-(1–7)] was
reported, suggesting that AT2R stimulation could also be a
pharmacological tool for attenuation of pulmonary hyper-
tension. Another AT2 agonist, compound 21 (C21), was
recently reported to also attenuate pathophysiology, and
reversed the pulmonary fibrosis and prevented the right
ventricular fibrosis associated with pulmonary hyperten-
sion induced by monocrotaline [128].
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Liver fibrosis
The RAS appears to play a significant role in liver mor-
phology and function. Increased activity of the ACE/Ang II/
AT1 axis is related to fibrogenesis and steatosis, while an
opposite role is exerted by ACE2/Ang-(1–7)/Mas ([129] for
review) (Figure 4). A pronounced gene expression activa-
tion of the ACE2/Ang-(1–7)/Mas axis was reported follow-
ing biliary duct occlusion, a maneuver associated with liver
fibrosis [130–132]. Blockade of Ang-(1–7) in such condi-
tions produced a worsening of liver fibrosis, indicating a
protective role of the heptapeptide in the liver [131]. An
anti-fibrotic effect was also observed upon AT1R blockade,
suggesting that the balance between the two axes is im-
portant in maintaining fibrinogenesis homeostasis in the
liver. These effects appear to be dependent on the influence
of Ang II and Ang-(1–7) on stellate cells whose proliferation
is stimulated by Ang II and inhibited by Ang-(1–7) [129].

The influence of the RAS is not restricted to fibrogenesis.
Ang II facilitates steatosis while Ang-(1–7) has an anti-
steatotic effect [129,133]. Furthermore, the liver is a target
for important metabolic effects produced by the RAS,
including neo-gluconeogenesis [134].

Concluding remarks
In the past few years there has been a remarkable expan-
sion of our knowledge about the cardiovascular and non-
cardiovascular role of the RAS. An important part of this
advance was motivated by the physiological, pathophysio-
logical, and therapeutic implications of the discovery of a
novel dimension of the RAS, the ACE2/Ang-(1–7)/Mas axis.
We have attempted in this review to address the pleiotro-
pic role of the RAS and its two axes in the body. The
therapeutic potential of Ang-(1–7)-like Mas agonists and
maneuvers aimed to stimulate ACE2 activity are only
beginning to be explored. Ongoing clinical studies/trials
will be important to establish the possibility of expanding
intervention in this system as a means to treat cardiovas-
cular and non-cardiovascular diseases.
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