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Since the discovery of leptin in 1994 by Zhang et al., there have been a number of reports showing its implication
in the development of a wide range of cardiovascular diseases. However, there exists some controversy about
how leptin can induce or preserve cardiovascular function, as different authors have found contradictory results
about leptin beneficial or detrimental effects in leptin deficient/resistant murine models and in wild type tissue
and cardiomyocytes. Here,wewill focus on themain discoveries about the leptin functions at cardiac levelwithin
the last two decades, focusing on its role in cardiac metabolism, remodeling and contractile function.
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Introduction

For many years the human being has adapted its body physiology
to the lack of nourishment in order to survive [10]. Nowadays,
overeating and sedentary lifestyle are increasing the prevalence
of obesity worldwide reaching pandemic proportions and becoming
an important public health problem [10]. As the prevalence
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of obesity increases so does the burden of its associated co-
morbidities (Fig. 1), which includes type II diabetes, metabolic
syndrome, or cardiovascular diseases such as myocardial infarction,
angina pectoris, congestive heart failure, stroke, hypertension, and
atrial fibrillation [76].

Many scientists have studied the mechanisms of the energy
balance at cellular, tissue, organ and whole body levels in order
to achieve a better knowledge about how to treat or prevent the
incidence of obesity and its co-morbidities. One of the most
important and widely studied players in the control of energy
balance is the hormone leptin [30,71], discovered 20 years ago by
Zang et al. [111]. Leptin is a 16 kDa protein mostly secreted from
of leptin in cardiomyocyte physiology and physiopathology, Life Sci
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Fig. 1.Morbidities related to obesity [89].
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adipose tissue which has a critical role regulating body weight and
energy homeostasis [73,87]. Leptin mediates its effects by binding
to specific leptin receptors (LepRs) expressed in the brain and in
peripheral tissues [45]. In the hypothalamus leptin acts as an
anorexigenic hormone regulating the melanocortine/neuropeptide
Y system to reduce food intake, increase energy expenditure, and
decrease body weight [7,71]. However, circulating leptin levels are
increased in obese humans [42], suggesting that obesity may be
either a result or a cause of leptin resistance [19,29,83]. In fact,
local effects of leptin can be governed by deregulation of its receptor
expression or downstream signaling components, in particular
proteins known to suppress cytokine, and leptin signaling [38].

In an effort to better understand the pathophysiology of human
obesity and its co-morbidities, several rodent models of obesity
have been developed and implemented including high fat diet
feeding and spontaneous mutants of leptin or its receptor such as
ob/ob (mutant for leptin gene, leptin deficient) and db/db (loss-of
function mutation in the leptin receptor, leptin resistant) mice
or Zucker fa/fa rats (loss-of function mutation in the leptin receptor,
leptin resistant) [57]. These animals have the common feature
of compromised cardiac contractile function [85] and in humans
circulating leptin levels are elevated in vascular and coronary
heart diseases [84], favoring a contemporary perception of
hyperleptinemia as an independent risk factor for the development
of cardiovascular diseases.

Although the adipose tissue is the main source of leptin, it is also
produced by other peripheral tissues, such as the liver, the skeletal
muscle or the kidneys [53,100,102]. Within the heart, leptin and
its receptor are abundantly expressed in cardiomyocytes [62,75]
where it can regulate the baseline physiology of the heart,
including cardiomyocyte contractility, hypertrophy, apoptosis,
and metabolism [63]. In this review we will summarize the main
discoveries about the leptin functions at cardiac level within the
last two decades, focusing on its actions on cardiac tissue and
cultured cardiomyocytes.
Leptin signaling and cardiomyocyte metabolism

Leptin and glucose and fatty acid metabolism

The constant pumping activity of the heart requires a permanent
supply of energy [55]. It is widely accepted that fatty acids are
the predominant energy substrates used in the normal adult
myocardium, providing ~70% of adenosine triphosphate (ATP)
necessary for the heart to maintain contractile function [55].
However, the cardiac metabolic network is highly flexible in using
other substrates when they become abundantly available [47].
Thus, depending on the energetic context, the heart is capable
of using different substrates (including carbohydrates, lipids,
amino acids, and ketone bodies) for ATP production in the
mitochondria (Fig. 2.A), a concept known as metabolic flexibility of
the heart [47]. In a normal heart, mitochondria are largely fuelled
by acyl-coenzyme A (CoA) and pyruvate, which are the primary
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metabolites of fatty acids and carbohydrates, respectively [47].
Energy production from fatty acids requires oxygen consumption,
whereas carbohydrate-derived ATP is produced by both glycolysis
(oxygen independent) and glucose oxidation [69]. So that, although
glucose represents a small component of total myocardial energy
source, it is the most efficient means of energy production,
particularly in conditions of ischemia/hypoxia [69]. During exercise
lactate becomes the predominant energy substrate [33], and
prolonged fasting or a ketogenic diet increases circulating levels of
ketone bodies resulting in an enhanced use by the heart [104]. The
ability of the myocardium to switch from one energy substrate to
another (or to use multiple substrates simultaneously) is lost in
obesity and diabetes, a state of metabolic inflexibility in which glu-
cose transport, glycolysis, and glucose oxidation in cardiomyocytes
decrease, while fatty acid uptake and oxidation increase [20,35,47].

Despite the fact that there exist a number of studies regarding
leptin function in modulating systemic and skeletal muscle metabo-
lism, little is known about its implication in regulating cardiomyo-
cyte metabolism. Some groups have shown that ob/ob and db/db
mice, and fa/fa rats show a metabolic profile in which carbohydrate
uptake and utilization are reduced both in cardiac tissue [6,17,27,32,
61,92,99] and in cultured cardiomyocyte [27,61] by diminishing
glucose transporters GLUT4 translocation to plasma membrane
or its protein and mRNA levels, and by reducing pyruvate dehydro-
genase and oxoglutarate dehydrogenase activity. In contrast, fatty
acid uptake rates are increased in these leptin deficient or resistant
animal models through a mechanism that involves the increase
in the expression and membrane localization of the fatty acid
translocase (FAT)/CD36 and the stimulation of peroxisome
proliferator-activated receptor α (PPARα) signaling (Fig. 2.B) [1,
12–14,61,69]. While in leptin deficient/resistant mice the increase
in fatty acid uptake is accompanied by an increase in fatty acid
oxidation, in fa/fa rats the increase on fatty acid uptake is uncoupled
with the oxidation and yields to lipotoxicity [113]. These findings
suggest a role for the disruption of leptin signaling in the develop-
ment of the metabolic inflexibility observed in cardiac metabolism
under pathological conditions, favoring fatty acid utilization and
diminishing cardiac efficiency.

In vitro experiments with cardiac cells have shown that short-term
(1 h) leptin treatment has no effect on glucose uptake and oxidation
in HL-1 cardiomyocytes and in perfused rat hearts, while fatty acid
uptake and oxidation are increased [1,69]. Long term leptin treatment
(24 h) also has no effect on glucose uptake and oxidation in HL-1
cardiomyocytes and increases fatty acid uptake, however long
term treatment induces a decrease in fatty acid oxidation leading to
intracellular lipid accumulation [69], confirming the results obtained
by Zhou et al. in fa/fa rats [113].
Leptin and cardiomyocyte autophagy

Autophagy is an evolutionarily conserved lysosome-mediated
catabolic pathway that maintains cellular homeostasis through the
renewal/recycling of cytoplasmic materials and organelles (such as
of leptin in cardiomyocyte physiology and physiopathology, Life Sci
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mitochondria) and protein aggregates that could become toxic to the
cell [49]. Such cellular refreshing is particularly important in quies-
cent and terminally differentiated cells, like cardiomyocytes, in
which damaged components are not diluted by cell replication, and
in which aging increases its accumulation, making the function of
the cells less efficient and decreasing their adaptability [96]. The
breakdown products derived from autophagy have a dual role,
providing substrates for both biosynthesis and energy generation,
and being of special importance to assure substrate availability and
energetic maintenance under stress [54]. Autophagy can be activated
by a number of diverse stimuli including caloric restriction, oxidative
stress, hormones, or other developmental signals [41], and it is
typically measured by the stimulation of a post-translational
modification of microtubule-associated protein 1 light chain 3
(LC3I) that increases its electrophoretic mobility due to proteolysis
and lipidation (LC3II), the increase in AMP-activated protein kinase
(AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, the
mammalian target of rapamycin (mTOR) dephosphorylation, the
increase in proteins derived from autophagy-related genes (Atg) 5
and 7, and the reduction of the autophagic substrate p62 [59].
Deregulation of autophagy in cardiomyocytes is associated with
various cardiac diseases, such as isquemic heart disease, hyperten-
sive heart disease, arrhythmia, isquemia/reperfusion injury or heart
failure [88]. Particularly, cardiomyocytes have extremely high
mitochondrial density compared with other tissues due to its
continuous high demand for energy. And, because of that, they
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need a continuous basal-level autophagic turnover of mitochondria
(mitophagy) to assure the proper functioning of the heart [41].

In leptin deficient or resistant mice, it has been shown an increase
in autophagy in peripheral tissues such as the liver or the skeletal
muscle, measured by the increase in LC3II leves and the diminution
of p62 [59]. These results could indicate that leptin signaling disrup-
tion may induce autophagy; however, external application of leptin
also stimulates autophagy in those tissues [59]. According to this,
leptin has been shown to have a pro-autophagic effect in different
cell types, including human cervical carcinoma HeLa cells, human
HCT116 colorectal cancer cells, human U2OS osteosarcoma cells,
mouse embryonic fibroblast, rat bone marrow-derived mesenchymal
stem cells and piglet intestinal epithelial cells [59,93,101,103]. Never-
theless, leptin treatment also seems to protect from autophagy progres-
sion in human T cells [16].

With respect to leptin effect on cardiac autophagy, it has been
reported that db/db mice show increased levels of myocardial au-
tophagy (increased levels of LC3II and decreased of p62) [59], and
leptin injection induces a higher increase of autophagy in myo-
cardium, effect also observed in liver and skeletal muscle [59].
Moreover, leptin injection in C57BL/6 mice also induce an in-
crease in autophagy in cardiac tissue, similar to the autophagy in-
ducers spermidine, resveratrol or rapamycin [59], as well as
leptin treatment of left ventricle cultured cardiomyocytes also in-
duces autophagy [43]. Taking all together, those results suggest a
complex relationship between autophagy and leptin signaling,
of leptin in cardiomyocyte physiology and physiopathology, Life Sci
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where any deviation from leptin homeostasis may affect autoph-
agy progression.

Leptin signaling and cardiac remodeling

Leptin and cardiomyocyte hypertrophy

Cardiac hypertrophy is one of the main ways in which
cardiomyocytes respond to mechanical and neurohormonal stimuli
to increase their work output and improve cardiac pump function
[15]. However, this compensatory mechanism can become
overwhelmed by biomechanical stress, thereby resulting in the
development of cardiac diseases such as ischemic heart disease,
hypertension, heart failure or valve disease [15]. For instance,
chronic excessive accumulation of body fat causes adaptations of
the cardiovascular system to maintain whole body homeostasis
such as increased cardiac output and a decrease in peripheral
resistance [5]. Stroke volume, the major determinant in the
increased cardiac output in the obese patient, increases due to the
augmentation of circulating blood volume, induces an enlargement
of the cardiac cavities and increases wall tension, leading to left
ventricular hypertrophy (LVH) [5].

Deregulation of the leptin signaling pathway within the heart
has been suggested to be one of themechanisms that cause LVH, howev-
er there exist contradictory studies about leptin role in the development
of LVH. A number of publications have shown a pro-hypertrophic effect
of leptin treatment in neonatal rat cardiomyocytes [31,37,39,44,79–81,
106,108-110] and in human pediatric ventricular myocytes [58]. Also,
it has been shown that the neutralization of LepR using antibodies
abrogates hypertrophy in surviving myocardium after coronary ar-
tery ligation in rats [77]. According to this, clinical studies demon-
strated a positive correlation between serum leptin levels and left
ventricular mass or wall thickness in obese and in insulin resistant
patients [70,74]. The mechanisms described through which leptin
can induce cardiomyocyte hypertrophy seem to be quite different:
induction of mTOR signaling [108], calcineurin activation and nucle-
ar factor of activated T-cells (NFAT) nuclear translocation [80], acti-
vation of PPARα signaling [37], mitogen-activated protein kinase
14 (p38) activation and translocation into the nuclei [79,109], acti-
vation of Rho and actin dynamics [110] or increased intracellular
levels of reactive oxygen species [39,106]. However, it has also
been shown that leptin treatment of neonatal rat and HL-1
cardiomyocytes has no effect on the development of hypertrophy
[75].

On the contrary, mice lacking leptin (ob/ob) or its receptor (db/db)
develop LVH when they become morbidly obese [3,4,50,82], while
leptin repletion in ob/ob mice restores left ventricle normal thickness
independently of body weight [4]. In hearts from diet induced obese
mice showing hyperleptinemia, LepR continue to respond to elevated
circulating or cardiac leptin, which seems to protect from cardiac
hypertrophy via LepR-induced signal transducer and activator of
transcription 3 (STAT3) activation compared to LepR mutant or db/db
mice [50].

In summary, it is unclear whether cardiac hypertrophy is the
consequence of pro-hypertrophic effects of leptin or rather the result
of a resistance toward leptin's preventive effects on hypertrophic
cardiac remodeling.

Leptin and cardiomyocyte apoptosis

The myocardium is comprised of terminally differentiated
cardiomyocytes that are responsible for contractile function and that
have a limited capacity to efficiently regenerate [68]. Maintenance of
cardiac homeostasis depends on cardiomyocyte death and renewal,
and excessive loss of cardiomyocytes has been implicated in
cardiovascular diseases such as myocardial ischemia/reperfusion injury
Please cite this article as: S. Feijóo-Bandín, et al., 20 years of leptin: Role
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and congestive heart failure, situationswhere, with fewermyocytes, the
heart is unable to sustain efficient contraction [68]. Among the main
mechanisms that promote loss of cells in the heart is apoptosis, a highly
regulated process by which activation of specific signaling cascades
ultimately leads to cell death [68]. An apoptotic cell undergoes
structural changes including cell shrinkage, plasma membrane
blebbing, nuclear condensation, and fragmentation of the DNA and
nucleus, followed by fragmentation into apoptotic bodies that are
quickly removed by phagocytes [68]. Apoptosis is mediated by two
central pathways: the extrinsic or death receptor pathway, that is
induced via activation of a death domain-containing receptor located
at the plasma membrane, and the intrinsic or mitochondrial pathway,
which is activated by intracellular stress signals such as loss of growth
factors, hypoxia, oxidative stress, or DNA damage (Fig. 3.A) [68]. The
immediate objectives of apoptotic signaling are the activation of
caspases and the disabling of mitochondrial function to induce the cell
death [21].

In obese Zucker rats (fa/fa), cardiomyocytes show increased levels of
apoptosis which involve both the extrinsic and the intrinsic apoptotic
pathways, pointing to the existence of local and systemic stresses in the
Zucker fa/fa hearts to induce cell death [48,56]. Similar to Zucker fa/fa
rats, db/db and ob/obmice have increased total cardiac triglyceride levels
and increased cardiomyocyte apoptosis, however, it has been shown that
the triglyceride accumulation and the high levels of cardiac apoptosis in
ob/ob mice can be returned toward normal with leptin repletion [3], as
well as in db/dbmice the rescue of cardiac leptin receptors preventsmyo-
cardial triglyceride accumulation and improves cardiac function [34], pro-
viding a direct role for leptin in preventing excess of cardiac lipid
accumulation and in ameliorating cardiac function. Thesefindings suggest
that increased cell death in these obese models is not just a reflection of
senescence or injury, but rather specific pathways directly related with
leptin signaling disruption (Fig. 3.B). According to this, the generation of
a cardiomyocyte-specific leptin receptor knock-out mouse showed that
leptin signaling disruption exhacerbates cardiac injury in the post-
miocardial infarction failing heart by acting directly on cardiomyocytes
to increase cardiac hypertrophy, apoptosis, and inflammation, as well as
deleterious changes in cardiac structure, function, and glycolytic metabo-
lism [63].

One of the mechanisms that induce apoptosis in the heart of the
leptin resistant Zucker rats is the lipoapoptosis. Triacylglycerol content
in nonadipose cells is normally quite low and is maintained within a
narrow range, whereas in adipocytes it can vary considerably
depending on the composition and quantity of food intake [97]. This
reveals a limited ability of nonadipose tissue to accommodate excess
of triglycerides and a strict regulation of triglyceride levels in both
adipose and nonadipose cells [97]. In this line, in the Zucker fa/fa hearts
a sharp increase in lipid accumulation that leads to cardiomyocyte
apoptosis and cardiac dysfunction occurs (Fig. 3.B) [113]. Although
triglycerides are themselves harmless, they are hydrolyzed to
fatty acyl-CoA, providing increased substrate for synthesis of the pro-
apoptotic sphingolipid ceramide, which triggers the intrinsic apoptosis
pathway in cardiomyocytes [11,72]. In fa/fa Zucker cardiomyocytes
the increase of triglyceride accumulation is correlated with increased
ceramide levels and increased DNA damage, leading to lipoapoptosis
[113].

Therefore, it could seem clear that at cardiac level leptin must have
an anti-apoptotic effect. In several studies it has been shown that leptin
treatment protects cultured cardiomyocytes from apoptosis in different
ways (Fig. 3.B) [22,28,91,94,95,107,112]. Leptin has been shown to
inhibit the mitochondrial permeability transition channel pore (mPTP)
opening in murine cardiomyocytes [22,94,95], which is one of the
mechanisms that triggers apoptosis due to the release of cytochrome
C into the cytoplasm [8]. In the subclone of the original clonal cell line
derived from embryonic BD1X rat heart tissue (H9c2), leptin treatment
exerts a protective effect against H2O2-induced apoptosis by
preventing the activation of components of the intrinsic pathway of
of leptin in cardiomyocyte physiology and physiopathology, Life Sci
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apoptosis by reducing Bax integration in the mitochondrial membrane
and cytochrome C release frommitochondria [28] and it also attenuates
hypoxia/reoxygenation-induced activation of the intrinsic pathway of
apoptosis [91]. In neonatal rat cardiomyocytes leptin exerts a direct
anti-apoptotic effect in serum-deprived cardiomyocytes by relieving
oxidative stress and inactivating the intrinsic apoptotic pathway [112],
and it also abrogates tumor necrosis factorα (TNFα)-induced apoptosis
by blocking both the intrinsic mitochondrial pathway of apoptosis and
the extrinsic apoptotic pathway upregulated by TNFα [107].

In the opposite, other research groups have suggested a pro-
apoptotic function of leptin at cardiac level under damaging
conditions (Fig. 3.B). In the presence of excessive intracellular
calcium accumulation, leptin may contribute to mitochondrial
dysfunction by inducing the mPTP opening and the development of
cardiomyocyte apoptosis [60]; also, under high glucose conditions,
the inhibition of leptin signaling protects H9c2 cells from mPTP
opening [18] suggesting that, depending on the cellular context,
leptin signaling may exert protective or detrimental actions on
cardiomyocytes viability.

Leptin signaling and cardiomyocyte contractility

In the heart, Ca2+ influx acts as a multi-functional signal that triggers
muscle contraction, controls action potential duration, and regulates gene
expression [90]. The sarcoplasmic reticulum (SR) in striated muscle is a
highly specialized form of endoplasmic reticulum which surrounds the
myofilaments and operates in collaboration with deep invaginations of
Please cite this article as: S. Feijóo-Bandín, et al., 20 years of leptin: Role
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the plasma membrane (or sarcolemma), called transverse (t)-tubules,
to regulate the release of calcium from the SR lumen into the cytoplasm,
where it regulates myocyte contraction [26]. During cardiac excitation–
contraction coupling, β-adrenergic signaling induces the activation of
Na+/Ca2+ exchanger channels through PKA signaling, leading to
sarcolemma depolarization [9]. This depolarization stimulates the
opening of high-voltage-activated L-type calcium channels (LTCC) in the
sarcolemma, generating a Ca2+ current into the cytosol, which induces
Ca2+ release from the sarcoplasmic reticulum(SR) via ryanodine receptor
(RyR) channels to initiate myocyte contraction (Fig. 4.A) [9]. On the
contrary, sarcoplasmic/endoplasmic reticulum calcium ATPase 2
(SERCA2) and phospholamban activation (PLN) have a key role in
sarcoplasmic reticulumCa2+ sequestration from the cytosol andmyocyte
relaxation [46]. Abnormalities in SR Ca2+ cycling are hallmarks of heart
diseases such as heart failure or atrial fibrillation and contribute to the
pathophysiology and progression of these diseases [40,46].

Ob/ob and db/db mice, and fa/fa rats develop cardiac contractile
dysfunction, showing slowed intracellular Ca2+ decay rate and re-
duced contractile capacity in myocytes (Fig. 4.B) [24,25,51,65,85,
86]. SERCA2 and Na+/Ca2+ exchanger channel activity are
depressed in leptin deficient mice [23], while leptin treatment of
cardiomyocytes from ob/obmice improves β-adrenergic responsive-
ness with increased protein expression of the stimulatory guanine
nucleotide-binding protein α subunit (Gsα), enhanced PKA activity
and enhanced phosphorylation of PLN [65]. These data provide a
convincing link between adequate leptin signaling and cardiac func-
tion and suggest a mechanism by which leptin deficiencymay lead to
of leptin in cardiomyocyte physiology and physiopathology, Life Sci
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cardiac dysfunction [24,25]. However, it has been shown that leptin
treatment of rat adult ventricular cardiomyocytes also depresses
contractile function through different pathways (Fig. 4.B), including
endothelin-1 receptor-NADPH oxidase pathway [24,25], the increase
of NO production [66], the Jak/STAT pathway [105], interleukin 1β
signaling [78] or inducing autophagy [43]. Recent evidence shows
that autophagy is involved in controlling contractile capacity in
vascular smooth muscle cells, in which defective autophagy
leads to an imbalance between calcium release/influx and calcium
re-uptake/extrusion, resulting in higher basal calcium concentra-
tions and significant effects on vascular contractility [64]. Therefore,
autophagy activation could be an important mechanism through
which leptin induces contractile dysfunction in cardiomyocytes.
Conclusion

Since the discovery of leptin in 1994 by Zhang et al., there have been
a number of reports showing its implication in the development of a
wide range of cardiovascular diseases [2,36,98,101,103]. However,
there exists some controversy about how leptin can induce or preserve
cardiovascular function, as different authors have found contradictory
results about leptin beneficial or detrimental effects in leptin deficient/
resistant murine models and in wild type tissue and cardiomyocytes.
It seems clear that deregulation of leptin signaling may have important
implications in heart physiology, but further investigation is needed to
achieve a better understanding, as it is not clear whether a leptin resis-
tance or its interaction with other cellular pathways could be involved.
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