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A variety of leptin actions require a re-examination of classic concepts of metabolic diseases. Here we
present evidence for two physiologic pathways: a pathway that protects nonadipose tissues from overaccu-
mulation of potentially toxic lipids and unrecognized paracrine interactions between a and b cells revealed
by leptin’s ability to suppress diabetic hyperglucagonemia. These observations strongly point to new thera-
peutic possibilities for both type 1 and type 2 diabetes.
Introduction
The discovery of leptin two decades ago has radically altered

biologic perspectives of diabetes and metabolic diseases. Ini-

tially considered an antiobesity hormone, leptin was subse-

quently proposed to protect nonadipose tissues, such as liver,

endocrine pancreas, and heart, from the lipotoxicity often asso-

ciated with diet-induced obesity (DIO). Indeed, whenever leptin

is congenitally absent or its action defective, a phenotype of lip-

otoxic disease of these organs appears.

Here, we review two areas in which leptin actions have forced

revision or replacement of classic views of metabolic disease.

First, we consider a physiologic antilipotoxic connection be-

tween leptin and nonadipose tissues; second, we examine phys-

iologic and pharmacologic interactions between a and b cells

uncovered through leptin’s suppression of diabetic hypergluca-

gonemia; and third, we apply these new insights to improving

treatment of diabetes.

Antilipotoxic Physiology for Leptin
Evolutionary Teleology of Leptin

The untenability of the belief that leptin was an antiobesity hor-

mone left the adipokine without an accepted physiologic role.

The fact that DIO is the only chronic upregulator of leptin expres-

sion and secretion (Considine et al., 1996; Mizuno et al., 1996)

suggested that its physiologic role might be to prevent some

adverse consequence of overnutrition (Lee et al., 2001). Indeed,

the fact that leptin upregulates AMP kinase (Minokoshi et al.,

2002; Steinberg et al., 2003), UCP1 (Scarpace et al., 1997),

and enzymes of fatty acid (FA) oxidation (Suzuki et al., 2007)

was consistent with a role in enhancing uncoupled FA oxidation

of excess FAs (Shimabukuro et al., 1997). This role was sup-

ported dramatically by the fact that, in mice and rats with

congenital lack of leptin action, ectopic lipid accumulation is

much greater on a 6% fat diet than in normal rodents fed a

60% diet (Lee et al., 2001). Similarly, lipotoxicity is minimal in

wild-typemice on a 60% fat diet, whereas it is a severe life-short-

ening clinical problem in leptin-deficient animals even on a 6%

fat intake. This suggests that a physiologic role of leptin is to pro-

tect nonadipose tissues from lipotoxicity by minimizing ectopic

lipid accumulation during periods of overnutrition and increasing

caloric storage required to survive famine (Neel, 1962).
Evidence that Hyperleptinemia Prevents Lipotoxicity

To test the foregoing concept that leptin’s physiologic role could

be to protect nonadipose organs against lipotoxicity, we studied

mice with heart-specific lipotoxicity resulting from transgenic

expression of an acyl-CoA synthase gene controlled by the

myosin heavy-chain promotor (Chiu et al., 2001). The phenotype

consisted of severe dilated cardiomyopathy with 100%mortality

within 100 days. Electron microscopy revealed cardiomyocytes

filled with fat droplets (Lee et al., 2004). The dilated hearts

were fibrotic. TUNEL staining provided evidence of ongoing lip-

oapoptosis (Chiu et al., 2001).

To test the premise that a physiologic role of diet-induced

hyperleptinemia is to prevent lipotoxicity, we induced hyperlep-

tinemia in the acyl-CoA synthase-MHC transgenic mice by in-

jecting them with adenovirus containing either the leptin cDNA

or a b-galactosidase cDNA as a control. In the hyperleptinemic

mice, lipotoxic cardiomyopathy was completely prevented and

the cardiomyocytes were devoid of fat droplets. Instead, they

contained myriads of small mitochondria (Lee et al., 2004). All

hyperleptinemic mice survived beyond 90 days. Thus, hyperlep-

tinemia completely blocked lipotoxicity in the heart.

To determine if hyperleptinemia can also block lipotoxicity in

the endocrine pancreas, we isolated islets from normal rats

and injected them into the portal vein of closely related diabetic

recipients. The recipients had been made insulin deficient by

previous treatment with streptozotocin (STZ) (100 mg/kg). The

rationale was to induce steatosis in hepatocytes surrounding

the islet transplants by exposing them to undiluted insulin from

b cells. The high local insulin should upregulate the lipogenic

transcription factor SREBP1c and its target genes in the hepato-

cytes, stimulating lipid production (Horton et al., 2002; Shimo-

mura et al., 1999). Because islets secrete lipoprotein lipase

(Marshall et al., 1999), triglycerides (TGs) would be hydrolyzed,

exposing the islets to high FA levels, which should cause lipotox-

icity. If lipotoxicity appeared, the rats would be made hyperlep-

tinemic to test leptin’s antilipotoxic activity in islets. This design

might ‘‘cure’’ the chemically induced T1D in the recipient, but

induce T2D in the donor islet transplants that cured the T1D.

Immunostaining of hepatocytes revealed SREBP1-positive

hepatocytes surrounding each islet transplant (Lee et al.,

2007). Oil-red O staining was also positive in hepatocytes
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Figure 1. Evidence for New Pathophysiologic and Therapeutic
Concepts in Diabetes
(A) In the absence of ceramide, 30 units of insulin cause marked down-
regulation of glucagon mRNA in cultured a cells. The presence of 50 mM
ceramide completely prevents the downregulation by insulin.
(B) In glucagon receptor knockout (GcgR�/�) mice, complete deficiency of
insulin caused by high dose streptozotocin (STZ) administration does not
cause hyperglycemia or any apparent clinical or metabolic abnormality (days
1–8). However, when adenovirus containing the glucagon receptor cDNA is
injected, causing the glucagon receptor mRNA to appear in the liver, blood
glucose rises near 500 mg/dl. When the transgenic glucagon receptor has
disappeared from the liver (day 15), the hyperglycemia also subsequently
disappears. These results show that the metabolic defects of diabetes are not
caused directly by lack of insulin but rather require hyperglucagonemia caused
by failure of paracrine insulin to suppress glucagon levels.
(C) Comparison of glucose profiles of insulin-deficient T1D NOD mice treated
with ‘‘optimal’’ insulin replacement (0.2 U/day, black squares) or with glucagon
suppression with continuous infusion of metroleptin (20 mg/hr, open squares).
Figures adapted from Lee et al., 2012 and Wang et al., 2010.
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surrounding the islet transplants.We next compared the TG con-

tent of liver and the area of insulin-positive cells in the transplants

in rats treated with adenovirus containing leptin or b-galactosi-

dase cDNA. The administration of adenovirus containing leptin

cDNA reduced liver TG content by 71% below the b-galactosi-

dase controls. It was also accompanied by a 20-fold increase

in the area of surviving insulin-positive b cells. If, as we postulate,

the low survival of the untreated control b cells was due to lipo-
16 Cell Metabolism 21, January 6, 2015 ª2015 Elsevier Inc.
toxicity in the islet transplants, we could conclude that hyperlep-

tinemia effectively prevented islet lipotoxicity and T2D in the

transplanted b cells.

Leptin as a Physiologic Suppressor of SPT and Ceramide

Synthesis

A more specific physiologic antilipotoxic role for leptin is sug-

gested by the fact that hyperleptinemia downregulates the

expression and activity of serine palmitoyl transferase (SPT)

(Shimabukuro et al., 1998a). SPT catalyzes condensation of

serine and palmitoyl CoA (Weiss and Stoffel, 1997) and is the

rate-limiting enzyme of ceramide biosynthesis (Merrill, 2002).

Ceramide has been implicated in both b cell lipoapoptosis (Shi-

mabukuro et al., 1998b) and in insulin resistance (Chavez and

Summers, 2012; Holland et al., 2007a, 2007b; Holland and Sum-

mers, 2008; Summers et al., 1998; Zhou et al., 1998). Evidence

that patients with T2D have insulin-resistant hyperglucagonemia

was first reported in 1975 (Raskin et al., 1975, 1976). Ceramide

can cause resistance to insulin-mediated suppression of

glucagon expression in cultured hamster a cells (Figure 1A).

The combination of insulin resistance in a cells plus lipotoxic

impairment of b cell function is a perfect pathophysiologic recipe

for T2D. Based on these findings, we suggest that a physiologic

role of leptin is to restrain ceramide formation in the endocrine

pancreas. This leptin action would prevent or delay the cer-

amide-induced lipotoxic impairment of b and a cells that can

cause T2D.

Although beyond the scope of this brief review, it is well estab-

lished that certain metabolic actions of leptin on hepatocytes

and adipocytes are mediated via the hypothalamus (Fujikawa

et. al., 2013; Perry et. al., 2014).

Physiologic and Pharmacologic a-b Cell Interactions
Proving the Bihormonal Partnership in Glucose

Homeostasis

Ever since its introduction in 1922, insulin has been accepted as

the essential master regulator of metabolism, without which life

is impossible. New evidence, much of it obtained by suppressing

glucagon with leptin, now indicates that most metabolic actions

of insulin are indirect and are mediated by glucagon. Moreover,

in rodents a normal and healthy lifespan can exist in the total

absence of insulin—provided glucagon action is suppressed.

These stunning observations were first uncovered through

leptin suppression of glucagon in insulin-deficient rodents (Yu

et al., 2008). However, the most incontrovertible evidence was

obtained in glucagon receptor knockout (GcgR�/�) mice (Gelling

et al., 2003), provided by Maureen Charron of Albert Einstein

School of Medicine. GcgR�/� mice with complete insulin defi-

ciency induced by STZ remained normoglycemic and thrived

for almost one year, despite the lack of detectable plasma levels

of insulin and C-peptide. Because b cells of GcgR�/� mice are

resistant to destruction by STZ (Omar et al., 2014), they received

two or three times the STZ dose required for wild-type controls,

which caused severe hyperglycemia, ketonemia, and death

within 4 weeks (Lee et al., 2012).

To determine if transgenic expression of GcgR in the liver of

the insulin-deficientGcgR�/�mice would make them as diabetic

as the wild-type controls, we administered adenovirus contain-

ing either the GcgR or b-galactosidase cDNA. Two days after ex-

pressing GcgRmRNA in their liver, theGcgR�/�mice developed



Table 1. Comparison of Concentrations of Acutely Secreted

Endogenous and Injected Exogenous Insulin Estimated Reaching

Its Target Tissues

Tissue Secreted Insulin Injected Insulin

Islets Rat: �2,000–4,000 mU �10 mU

Portal vein Acute, human: �100–500 mU �10 mU

Basal, dog: 21 mU

Peripheral vein Human: �9–20 mU �10 mU

Dog: �5–7 mU

The islet insulin values were calculated from the maximal binding capac-

ity of neutralizing antiserum perfused into normal rat pancreata to assess

insulin’s paracrine action on a cells (Maruyama et al., 1984). Values in the

portal vein for acute glucose challenge in humans and basal concentra-

tion in dog are from Blackard and Nelson, 1970 and Sindelar et al.,

1998, respectively. Values for human and dog peripheral vein are taken

from Blackard and Nelson, 1970; Sindelar et al., 1998; and Moore

et al., 2014. Values for plasma insulin injected at 0.11 nmol/kg/hr are

fromMoore et al., 2014. The results explain why no dose of injected insu-

lin canmimic the stable glucoregulationmaintained by the target-specific

concentration gradients of secreted insulin.
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severe hyperglycemia approaching 500 mg/dl (Figure 1B),

accompanied by a robust increase in phosphorylated cAMP

response element binding (CREB) protein and phosphoenolpyr-

uvate carboxy kinase (PEPCK) protein in their liver. The trans-

genic GcgR mRNA disappeared spontaneously after 7 days,

followed by disappearance of the hyperglycemia and accompa-

nying metabolic abnormalities (Figure 1B).

These results indicate that the hyperglycemia and hypercatab-

olism of insulin deficiency are not directly due to lack of insulin,

but rather are caused by glucagon excess resulting from defi-

ciency of paracrine insulin (Lee et al., 2012). They support the

idea, first proposed in 1975 (Unger, 1976), that b and a cells

work as partners. The b cells sense glycemic change and deliver

insulin via their paracrine connection to neighboring a cells to

regulate glucagon release. This relationship precisely tailors
the level reaching the a cells is far below normal paracrine insulin levels, and it do
episodes of well-controlled type 1 patients can be attributed to efforts to suppre
(C) In spontaneous type 2 diabetes, the insulin/glucagon ratio in perfused pancre
missing, but that there is an abundance of paracrine insulin. And yet, glucagon s
the a cells, like many other insulin target tissues, are insulin resistant. Figure ad
the mix of the two opposing hormones to adjust hepatic glucose

balance to meet the metabolic needs of the moment (Cherring-

ton, 1999; Exton et al., 1970).

Why Insulin Monotherapy in T1D Cannot Normalize

Glucose Homeostasis

In 1922 insulin therapy first converted uniformly fatal type 1 dia-

betes (T1D) into a condition compatible with years of near-

normal life. But replacement of the deficient insulin did not

restore the metabolic manifestations of the deficiency to normal

or eliminate the late complications of the disease. Indeed, it is

now clear that in T1D patients injected insulin can never dupli-

cate the stable glucoregulatory homeostasis provided by

secreted insulin in nondiabetic individuals. This is because in-

jected insulin can never duplicate the concentration gradients

produced by secreted insulin at target organs of nondiabetic

subjects (Table 1).

The journey of secreted insulin begins with a paracrinemission

to the juxtaposed a cells. The approximation of this paracrine in-

sulin concentration presented in Table 1 is based on themaximal

binding of the anti-insulin serum and the rate of its perfusion

required to produce hyperglucagonemia (Maruyama et al.,

1984). Portal vein and peripheral arterial insulin levels are based

on direct measurements in human and dog (Blackard and

Nelson, 1970; Moore et al., 2014), suggesting that glucagon sup-

pression requires�2,000–4,000 mU/ml per minute in the islet cir-

culation. Even if this is an overestimate, the fact that insulin is

virtually undiluted when it reaches a cells means that these islet

cells receive, by far, the highest concentration of insulin any-

where in the body. Insulin reaches the liver in diluted form,

estimated to be between �100–500 mU/ml. More accurate mea-

surements have been made by Moore (Moore et al., 2014) and

Edgerton (Edgerton et al., 2006). Insulin then undergoes further

dilution as it flows through the liver to the adipocytes and skeletal

muscle, where it circulates at between 9 and 20 mU/ml (Edgerton

et al., 2006). These dilutions are the consequence of the circula-

tory anatomy and cannot be duplicated by injected exogenous

insulin.
Figure 2. The a/b Cell Partnership in the
Perfused Rat Pancreas
(A) Normally the insulin/glucagon response to
glucose maintains tight control of glucose homeo-
stasis in nondiabetic mammals. The bihormonal
response is expressed as an insulin/glucagon ratio
in the shaded zoneat thebaseof eachpanel. Insulin
and glucagon are released from juxtaposed cells.
Insulin is a potent suppressor of glucagon. When
blood glucose rises, insulin secretion increases
sharply, particularly for 2–4min. The spike of insulin
is a powerful suppressor of glucagon from juxta-
posed a cells. After the first few minutes, insulin
levels fall, but are still well above baseline, and
glucagon levels remain suppressed well below the
baseline. This high insulin/glucagon ratio instructs
the liver to stop producing glucose and take up
ingested glucose entering the portal vein.
(B) In STZ-induced type 1 diabetes, there are
almost no b cells within the islets. The only source
of insulin is the subcutaneous injected dose. Thus,

es not change in response to changes in glycemia. The frequent hypoglycemic
ss glucagon-mediated hyperglycemia by increasing the insulin dose.
ata isolated from ZDF rats with T2D reveals that the first-phase insulin spike is
ecretion is not suppressed by the high glucose/high insulin. This suggests that
apted from Raskin et al., 1975.
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Figure 3. Proposed Pathway to T2D
Leptin, denoted by an ‘‘L,’’ acts negatively and simultaneously on multiple
points in the pathway. Hypothalamic leptin targets suppress caloric intake (L1).
Leptin suppresses glucagon production by the a cells that enable diet-induced
hyperinsulinemia (L2), inducing the SREBP1c-regulated program of lipogen-
esis (L3). Leptin activates AMPK, which will reduce palmitoyl-CoA levels (L4)
and inhibits the serine palmitoyl transferase (SPT) control of de novo ceramide
synthesis (L5). This will reduce b cell apoptosis (L6) and a cell insulin resistance
(L7). All of these effects decrease the pathways leading to T2D. Unfortunately,
obesity is usually accompanied by leptin resistance and fails to provide
optimal protection against lipotoxicity.
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In contrast to secreted insulin, subcutaneously injected exog-

enous insulin reaches every target tissue at an identical concen-

tration determined by the dose of hormone (Table 1). An insulin

dose sufficient to suppress a cells could require a dose �100

times that required to suppress lipolysis in adipocytes. This

would obviously predispose to dangerous glucopenia and con-

tribute to the glycemic volatility that commonly plagues patients

with T1D (Derr et al., 2003).

A bihormonal strategy, first proposed in 1975 (Unger, 1976)

and tested in 1978 (Raskin and Unger, 1978), may solve the

problem.Measurements of insulin and glucagon during the highs

and lows of glycemic volatility reveal that during hypoglycemic

dips insulin levels may average 16 ng/ml, almost 203 normal.

This iatrogenic hyperinsulinemia (Wang et al., 2013) can be elim-

inated by reducing the insulin dose by as much as 90%, which

can lower plasma insulin to below 1 ng/ml. The reduction of

the insulin dose will cause a rise in glucagon and hyperglycemia

at mealtime. This can be prevented by administering either a

noninsulin suppressor of glucagon, such as somatostatin, leptin,

liraglutide, GABA, or a glucagon receptor antagonist. It is ex-

pected that this strategy will provide stable normoglycemia

and lower HgbA1c to below 6, with little or no risk of hypoglyce-

mia (Figure 1C).
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T1D and T2D Paracrinopathy

Although paracrinopathy underlies all forms of diabetes, the par-

acrinopathies of T1D and T2D could not be more different. The

normal insulin/glucagon partnership is depicted in Figure 2A.

The b cells serve as glucose sensor, reacting to the rise in

glucose with a short burst of secreted insulin that sharply sup-

presses glucagon. The insulin/glucagon ratio rises to 7.4, a

powerful signal to the liver to take up incoming glucose and store

it as glycogen. In T1D (Figure 2B) there are no b cells, so that

paracrine insulin is constantly deficient, despite an excess of in-

sulin at downstream targets. This means that a cells will not be

suppressed by an increase in hyperglycemia. Glucagon levels

reaching the liver will always be inappropriately high, even after

a glucose-containing meal. The high portal vein glucagon in-

structs the liver not to take up incoming glucose and not to

convert it to glycogen. Rather, glucose will pass through the liver

to enter the posthepatic circulation, accompanied by inappro-

priate glucagon stimulation of hepatic glycogenolysis and gluco-

neogenesis. Thus, the postprandial surges that plague even

well-controlled T1D patients are the consequence, not only of in-

gested glucose, but also of endogenous glucose derived from

inappropriately enhanced hepatic production.

By contrast, the paracrinopathy of T2D (Figure 2C) involves no

dearth of paracrine insulin. In fact, in the first years of T2D, insulin

levels may be supernormal. Nevertheless, glucagon levels are

inappropriately elevated just as in T1D because the a cells, like

other targets of insulin in T2D, are insulin resistant. a cell insulin

resistance was first observed in 1976 in T2D patients, who

required more than seven times as much insulin as nondiabetic

subjects to lower plasma glucagon by 3 pg/ml (Raskin et al.,

1975, 1976). This resistance may be the result of excess palmi-

tate accumulation in islet cells as well as other target tissues of

insulin (Piro et al., 2010). The palmitate may directly contribute

to insulin resistance and/or it may condense with serine to

form ceramide. In T2D, glucagon hypersecretion continues to

maintain a subnormal insulin/glucagon ratio that causes inap-

propriate hepatic overproduction of glucose.

Leptin and the Pathway to T2D
Although leptin is not an islet hormone, it is a close collaborator

with islet hormones, protecting them from T2D. Figure 3 depicts

the postulated pathway from caloric excess to T2D. Virtually

every pathogenic point on the pathway to lipotoxicity, from the

high food intake to ceramide synthesis, is protectively influenced

by leptin (indicated by ‘‘L’’ on the figure).While themetabolic syn-

drome is outside the scope of this review, it should be pointed out

that lipotoxicity has been proposed to be a systemic disorder that

affects all nonadipose organs and could therefore be its cause.
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